Given equation x2−2ax+a2+a−3=0.... (1) ⇒(x−a)2=3−a
Since, (x−a)2≥0 ⇒3−a≥0 ⇒a≤3
We have a formula for solving quadratic equation ax2+bx+c=0 is x=2a−b±b2−4ac
Now, the roots of equation (1) are x=2⋅1−(−2a)±(−2a)2−4⋅1⋅(a2+a−3) x=a±3−a
Since, roots are less than 3 . a+3−a<3 ⇒3−a<3−a ⇒3−a<9+a2−6a ⇒a2−5a+6>0 ⇒(a−2)(a−3)>0 ⇒a<2 or a>3
Hence, a<2.