Let f(x)=2x3−3(a+1)x2+6ax−12
For maxima-minima, f′(x)=6{x2−(a+1)x+a}=0
i.e. 6(x−1)(x−a)=0⇒x=1,a f"(x)=12x−6(a+1) f"(a)=12a−6a−6=6a−6 =6(a−1) ∴ If a<1 , then x=a is a local maxima and x=1 is a local minima ∴2a=1
If a>1 , then x=a is a local minima and x=1 is a local maxima ∴a=2