Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the origin lies between zeroes of the polynomial f(x)=(x2/4)-ax+a2+a-2 , then the number of integral value(s) of a is
Q. If the origin lies between zeroes of the polynomial
f
(
x
)
=
4
x
2
−
a
x
+
a
2
+
a
−
2
, then the number of integral value(s) of
a
is
1893
189
NTA Abhyas
NTA Abhyas 2020
Complex Numbers and Quadratic Equations
Report Error
A
1
B
2
C
3
D
more than
3
Solution:
For zeroes on either side of the origin.
Opening upward parabola
⇒
f
(
0
)
<
0
⇒
a
2
+
a
−
2
<
0
⇒
(
a
+
2
)
(
a
−
1
)
<
0
⇒
−
2
<
a
<
1
⇒
2
integers i.e.
{
−
1
,
0
}