Q.
If the number of terms in the expansion of (1+x)101(1+x2−x)100 is n , then the value of 25n is equal to
2053
187
NTA AbhyasNTA Abhyas 2020Binomial Theorem
Report Error
Answer: 8.08
Solution:
(1+x)101(1+x2−x)100 =(1+x)((1+x)(1−x+x2))100 =(1+x)(1+x3)100 =1×(1+x3)100+x×(1+x3)100
So, the number of terms = ( 101 terms of the form x3k ) + ( 101 terms of the form x3k+1 ) =202 terms ⇒n=202