Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the number of common tangents to the pair of circles x2+y2-2 x+4 y-4=0 and x2+y2+4 x-4 y+α=0 is 4, then the least integral value of α is
Q. If the number of common tangents to the pair of circles
x
2
+
y
2
−
2
x
+
4
y
−
4
=
0
and
x
2
+
y
2
+
4
x
−
4
y
+
α
=
0
is 4, then the least integral value of
α
is
1687
211
TS EAMCET 2019
Report Error
A
4
B
5
C
6
D
7
Solution:
We have,
x
2
+
y
2
−
2
x
+
4
y
−
4
=
0
and
x
2
+
y
2
+
4
x
−
4
y
+
α
=
0
c
1
=
(
1
,
−
2
)
,
r
1
=
1
+
4
+
4
=
3
c
2
=
(
−
2
,
2
)
,
r
2
=
4
+
4
−
α
=
8
−
α
Circle have 4 common tangents
∴
c
1
c
2
>
r
1
+
r
2
⇒
(
1
+
2
)
2
+
(
−
2
−
2
)
2
>
3
+
8
−
α
⇒
9
+
16
>
3
+
8
−
α
⇒
2
>
8
−
α
⇒
8
−
α
<
4
⇒
α
>
4
∴
Least integral value of
α
=
5