Here, mean =4 and variance =2 ⇒np=4 and npq=2
So, npnpq=42 ⇒q=21
Then, p=1−q=1−21=21
Mean =np=4 ⇒n×21=4 ⇒n=8 ∴P(X=r)=nCrprqn−r =8Cr(21)8[∵p=q=21]
The required probability of atleast 7 successes is P(X≥7)=P(X=7)+P(X=8) =(8C7+8C8)(21)8 =(7!!!8!+8!0!8!)(21)8 =(8+1)(21)8=2569