Given matrix A=[0k2−1] A4+3IA=2I ⇒A4=2I−3A
Also characteristic equation of A is ∣A−λI∣=0 ⇒∣∣0−λk2−1−λ∣∣=0 ⇒λ+λ2−2K=0 ⇒A+A2=2K.I ⇒A2=2KI−A ⇒A4=4K2I+A2−4AK
Put A2=2KI−A
and A4=2I−3A 2I−3A=4K2I+2KI−A−4AK ⇒I(2−2K−4K2)=A(2−4K) ⇒−2I(2K2+K−1)=2A(1−2K) ⇒−2I(2K−1)(K+1)=2A(1−2K) ⇒(2K−1)(2A)−2I(2K−1)(K+1)=0 ⇒(2K−1)[2A−2I(K+1)]=0 ⇒K=21