Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the magnitude of the vector product of the vector hati+ hatj+ hatk with a unit vector along the sum of the vectors 2 hati+4 hatj-5 hatk and λ hati+2 hatj+3 hatk is equal to √2, then the value of ' λ ' is
Q. If the magnitude of the vector product of the vector
i
^
+
j
^
+
k
^
with a unit vector along the sum of the vectors
2
i
^
+
4
j
^
−
5
k
^
and
λ
i
^
+
2
j
^
+
3
k
^
is equal to
2
, then the value of '
λ
' is
1520
191
AP EAMCET
AP EAMCET 2020
Report Error
A
-1
B
1
C
0
D
2
Solution:
Let
a
=
i
^
+
j
^
+
k
^
b
=
2
i
^
+
4
j
^
−
5
k
^
c
=
λ
i
^
+
2
j
^
+
3
k
^
b
+
c
=
(
2
+
λ
)
i
^
+
6
j
^
−
2
k
^
d
^
=
unit vector along
(
b
+
c
)
=
∣
b
+
c
∣
b
+
c
=
(
2
+
λ
)
2
+
36
+
4
(
2
+
λ
)
i
^
+
6
j
^
−
2
k
^
d
=
λ
2
+
4
λ
+
44
(
2
+
λ
)
i
^
+
6
j
^
−
2
k
^
a
^
×
d
^
=
∣
∣
i
^
1
λ
2
+
4
λ
+
44
(
2
+
λ
)
j
^
1
λ
2
+
4
λ
+
44
6
k
^
1
λ
2
+
4
λ
+
44
−
2
∣
∣
=
λ
2
+
4
λ
+
44
1
∣
∣
i
^
1
2
+
λ
j
^
1
6
k
^
1
−
2
∣
∣
=
λ
2
+
4
λ
+
44
1
∣
i
^
(
−
8
)
−
j
^
(
−
2
−
2
−
λ
)
+
k
^
(
6
−
2
−
λ
)
∣
a
^
×
d
^
=
λ
2
+
4
λ
+
44
1
∣
−
8
i
^
+
(
4
+
λ
)
j
+
(
4
−
λ
)
k
^
∣
∣
a
^
×
d
^
∣
=
λ
2
+
4
λ
+
44
1
64
+
(
4
+
λ
)
2
+
(
4
−
λ
)
2
2
=
λ
2
+
4
λ
+
44
64
+
16
+
λ
2
+
16
+
λ
2
Squaring on both sides,
2
=
λ
2
+
4
λ
+
44
2
λ
2
+
96
2
λ
2
+
8
λ
+
88
=
2
λ
2
+
96
8
λ
=
8
λ
=
1