Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the lines x+2ay+a=0, x+3by+b=0 and x+4 cy+c=0 are concurrent, where a, b, c are non-zero real numbers, then
Q. If the lines
x
+
2
a
y
+
a
=
0
,
x
+
3
b
y
+
b
=
0
and
x
+
4
cy
+
c
=
0
are concurrent, where a, b, c are non-zero real numbers, then
2078
255
J & K CET
J & K CET 2009
Report Error
A
a
1
,
b
1
,
c
1
are in an AP
B
a
1
,
b
1
,
c
1
are in a GP
C
a, b, c are in an AP
D
a, b, c are in a GP
Solution:
Given lines are concurrent, if
∣
∣
1
1
1
2
a
3
b
4
c
a
b
c
∣
∣
=
0
⇒
∣
∣
1
0
0
2
a
3
b
−
2
a
4
c
−
2
a
a
b
−
a
c
−
a
∣
∣
=
0
⇒
1
[
3
b
−
2
a
)
(
c
−
a
)
−
(
b
−
a
)
(
4
c
−
2
a
)]
=
0
⇒
3
b
c
−
3
ab
−
2
a
c
+
2
a
2
−
4
b
c
+
2
ab
+
4
a
c
−
2
n
2
=
0
⇒
−
b
c
−
ab
+
2
a
c
=
0
⇒
b
c
+
ab
=
2
a
c
⇒
a
1
+
c
1
=
b
2
⇒
a
1
,
b
1
,
c
1
are in AP.