Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the line y = mx + 7√3 is normal to the hyperbola (x2/24) - (y2/18) = 1, then a value of m is
Q. If the line
y
=
m
x
+
7
3
is normal to the hyperbola
24
x
2
−
18
y
2
=
1
,
then a value of m is
3942
187
JEE Main
JEE Main 2019
Conic Sections
Report Error
A
2
5
24%
B
5
3
14%
C
5
2
25%
D
2
15
37%
Solution:
24
x
2
−
18
y
2
=
1
⇒
a
=
24
;
b
=
18
Parametric normal :
24
cos
θ
.
x
+
18
.
yco
tθ
=
42
At x = 0 :
y
=
18
42∣
t
an
θ
=
7
3
(from given
equation )
⇒
t
an
θ
=
2
3
⇒
s
in
θ
=
±
3
5
slope of parametric normal =
18
co
tθ
−
24
cos
θ
=
m
⇒
=
−
3
4
s
in
θ
=
−
5
2
or
5
2