Given P=(3,0) ∴ Equation of line AB is cos60∘x−3=sin60∘y−0=r (say) ⇒x=3+2r,y=2r3 ∴ point (3+2r,2r3) lies on y2=x+2 ∴43r2=3+2r+2 ⇒43r2−2r−(2+3)=0
Let the roots be r1 and r2, then the product r1×r2=PA⋅PB=∣∣43−(2+3)∣∣ =34(2+3)