Q.
If the least integral value satisfying the equation log3x2−4x+4=2log2(log3(∣x∣−2)) is α, then find the number of zeroes after decimal and before first significant digit in the number of (α)−4α.
556
123
Continuity and Differentiability
Report Error
Answer: 9
Solution:
log3∣x−2∣=2log2(log3(∣x∣−2)) ⇒log3∣x−2∣=log3(∣x∣−2) ⇒∣x−2∣=∣x∣−2 ⇒∣x∣−∣x−2∣=2 Case-I :x<0 −x+x−2=0 −2=2 (no solution)
Case-II: 0≤x<2 x+(x−2)=2 ⇒2x=4⇒x=2 (no solution) Case-III :x≥2 x−(x−2)=2 ⇒2=2 ∴x≥2
But log3(∣x∣−2)>0⇒∣x∣−2>1⇒∣x∣>3 ∴x∈(3,∞) is the solution set of the equation
Least integral value of x is 4 .
Now,(α)−4α=(4)−16=2−32 N=2−32 log10N=−32log102=−32×0.301=−9.632 ∴ Number of zeros after decimal and before first significant digit in 2−32 is 9