Q.
If the lattice point P(x,y,z);x,y,z>0 and x,y,z∈I with least value of z such that the ' Pn lies on the planes 7x+6y+2z=272 and x−y+z=16, then the value of (x+y+z−42) is equal to
7x+6y+2z=272 and x−y+z=16 ⇒5x+8y=240 ⇒x=48−58y
Let y=5λ,λ∈I ⇒x=48−8λ
and z=16+y−x=13λ−32
But x>0,y>0 and z>0 ⇒48−8λ>0 ⇒λ>848 ⇒λ≤5 and 13λ−32>0 ⇒λ>1332 ⇒λ≥3 ∴λ∈[3,5] ∴Zmin=39−32=7 ⇒x=24,y=15 ∴x+y+z−42=4