Q.
If the integrals i1=∫0∈fty1+x81dx and i2=∫01(1−x8)1/81dx, then
1924
202
NTA AbhyasNTA Abhyas 2020Integrals
Report Error
Solution:
In i1
put x8=tan2θ ⇒8x7dx=2tanθsec2θdθ ⇒i1=∫0π/2sec2θ⋅8⋅tan7/4θ2tanθsec2θdθ ⇒i1=41∫0π/2tan−3/4θdθ
In i2
put x8=sin2θ ⇒i2=∫0π/2(1−(sin)2θ)1/8⋅8(sin)7/4θ2sin θcos θdθ =41∫0π/2tan−3/4θdθ=i1 ⇒i2=i1