Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the integral I= displaystyle ∫ (tan x/5 + 7 tan2 â¡ x)dx =kln |f (x)|+C (where C is the integration constant) and f(0)=5 , then the value of f((π /4)) is equal to
Q. If the integral
I
=
∫
5
+
7
t
a
n
2
x
t
an
x
d
x
=
k
l
n
∣
f
(
x
)
∣
+
C
(where
C
is the integration constant) and
f
(
0
)
=
5
, then the value of
f
(
4
π
)
is equal to
1917
195
NTA Abhyas
NTA Abhyas 2020
Integrals
Report Error
Answer:
6
Solution:
I
=
∫
5
co
s
2
x
+
7
s
i
n
2
x
s
in
x
cos
x
d
x
Let
s
i
n
2
x
=
t
⇒
s
in
x
cos
x
d
x
=
2
d
t
I
=
2
1
∫
5
(
1
−
t
)
+
7
t
d
t
=
2
1
∫
5
+
2
t
d
t
=
4
1
l
n
∣
5
+
2
t
∣
+
C
=
4
1
l
n
∣
∣
5
+
2
s
i
n
2
x
∣
∣
+
C
∴
f
(
x
)
=
5
+
2
(
s
in
)
2
x
⇒
f
(
4
π
)
=
6