Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the integral Ι= displaystyle ∫ ex2x3dx =ex2f(x)+c , where c is the constant of integration and f(1)=0, then the value of f(2) is equal to
Q. If the integral
I
=
∫
e
x
2
x
3
d
x
=
e
x
2
f
(
x
)
+
c
, where
c
is the constant of integration and
f
(
1
)
=
0
,
then the value of
f
(
2
)
is equal to
2639
191
NTA Abhyas
NTA Abhyas 2020
Integrals
Report Error
A
4
8%
B
2
5
31%
C
2
3
46%
D
3
15%
Solution:
Let,
x
2
=
t
⇒
2
x
d
x
=
d
t
∴
I
=
∫
e
t
⋅
2
t
d
t
Using integration by parts, we get,
I
=
2
1
(
t
e
t
−
∫
1
⋅
e
t
d
t
)
=
2
1
(
t
e
t
−
e
t
)
+
c
=
e
x
2
(
2
x
2
−
1
)
+
c
∴
f
(
x
)
=
2
x
2
−
1
⇒
f
(
2
)
=
2
3