Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the integral ∫ ( cos 8 x+1/ cot 2 x- tan 2 x) d x=A cos 8 x+k, where k is an arbitrary constant, then A is equal to :
Q. If the integral
∫
c
o
t
2
x
−
t
a
n
2
x
c
o
s
8
x
+
1
d
x
=
A
cos
8
x
+
k
, where
k
is an arbitrary constant, then
A
is equal to :
1986
244
Integrals
Report Error
A
−
16
1
58%
B
16
1
18%
C
8
1
12%
D
−
8
1
12%
Solution:
Let
I
=
∫
c
o
t
2
x
−
t
a
n
2
x
c
o
s
8
x
+
1
d
x
Now,
D
r
=
cot
2
x
−
tan
2
x
=
s
i
n
2
x
c
o
s
2
x
−
c
o
s
2
x
s
i
n
2
x
=
s
i
n
2
x
c
o
s
2
x
c
o
s
2
2
x
−
s
i
n
2
2
x
=
s
i
n
4
x
2
c
o
s
4
x
∴
I
=
∫
s
i
n
4
x
2
c
o
s
4
x
2
c
o
s
2
4
x
d
x
=
∫
2
c
o
s
4
x
2
c
o
s
2
4
x
⋅
s
i
n
4
x
d
x
=
2
1
∫
sin
8
x
d
x
=
−
2
1
8
c
o
s
8
x
+
k
=
−
16
1
⋅
cos
8
x
+
k
Now,
−
16
1
⋅
cos
8
x
+
k
=
A
cos
8
x
+
k
⇒
A
=
−
16
1