Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the imaginary part of (2+i/ai-1) is zero, where a is a real number, then the value of a is equal to
Q. If the imaginary part of
ai
−
1
2
+
i
is zero, where
a
is a real number, then the value of
a
is equal to
2787
200
KEAM
KEAM 2011
Complex Numbers and Quadratic Equations
Report Error
A
2
1
B
2
C
−
2
1
D
−
2
E
2
3
Solution:
Given, let
z
=
ai
−
1
2
+
i
and
I
m
(
z
)
=
0
,
a
∈
R
…
(
i
)
z
=
(
ai
−
1
)
(
ai
+
1
)
(
2
+
i
)
(
ai
+
1
)
z
=
a
2
2
˙
2
−
1
2
ai
+
a
i
2
+
2
+
i
z
=
(
−
a
2
−
1
)
(
2
−
a
)
+
i
(
2
a
+
1
)
(
∵
i
2
=
−
1
)
z
=
(
a
2
+
1
)
(
a
−
2
)
−
i
(
a
2
+
1
)
(
2
a
+
1
)
From Eq. (i),
−
(
a
2
+
1
)
(
2
a
+
1
)
=
0
⇒
2
a
+
1
=
0
⇒
a
=
−
2
1