Q.
If the gradient of the tangent at any point (x,y) of a curve which passes through the point (1,4π) is {xy−sin2(xy)}, then equation of the curve is
Given, dxdy=xy−sin2(xy)
Put y=vx⇒dxdy=v+xdxdv v+xdxdv=v−sin2v ⇒−cosec2vdv=xdx
Integrating both sides, we get −∫cosec2vdv=∫xdx ⇒cotv=logx+C cotxy=logx+C
This curve passes through the ponit (1,4π) ∴C=1 ⇒cotxy=logx+logee ⇒cotxy=logxe ⇒y=xcot−1(logxe)