Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the function f ( x )=λ| sin x |+λ2| cos x |+ g (λ), λ ∈ R ( g is a function of λ ) is periodic with fundamental period (π/2), then
Q. If the function
f
(
x
)
=
λ
∣
sin
x
∣
+
λ
2
∣
cos
x
∣
+
g
(
λ
)
,
λ
∈
R
(
g
is a function of
λ
) is periodic with fundamental period
2
π
, then
280
123
Relations and Functions - Part 2
Report Error
A
λ
=
0
,
1
B
λ
=
1
C
λ
=
0
D
λ
=
−
1
Solution:
f
(
2
π
+
x
)
=
f
(
x
)
∀
x
∈
R
λ
∣
cos
x
∣
+
λ
2
∣
sin
x
∣
+
g
(
λ
)
=
λ
∣
sin
x
∣
+
λ
2
∣
cos
x
∣
+
g
(
λ
)
(
λ
−
λ
2
)
∣
cos
x
∣
+
(
λ
2
−
λ
)
∣
sin
x
∣
=
0∀
x
∈
R
λ
−
λ
2
=
0
⇒
λ
=
0
,
1
but
λ
=
0
(rejected)
⇒
λ
=
1