Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the function f(x) = begincases (cos x)1/x, text x ≠ 0 k, textx=0 endcases is continuous at x = 0, then the value of k is
Q. If the function
f
(
x
)
=
{
(
cos
x
)
1/
x
,
k
,
x
=
0
x=0
is continuous at
x
=
0
,
then the value of
k
is
1886
197
Continuity and Differentiability
Report Error
A
1
38%
B
−
1
20%
C
0
30%
D
e
12%
Solution:
x
→
0
lim
(
cos
x
)
1/
x
=
k
⇒
x
→
0
lim
x
1
l
o
g
(
cos
x
)
=
l
o
g
k
⇒
x
→
0
lim
x
l
o
g
(
cos
x
)
=
l
o
g
k
Using L-Hospital's rule
⇒
x
→
0
lim
cos
x
1
(
−
s
in
x
)
=
l
o
g
k
⇒
x
→
0
lim
−
t
an
x
=
l
o
g
e
k
⇒
k
=
1