Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the function f( x )= ax e - bx has a local maximum at the point (2,10) then
Q. If the function
f
(
x
)
=
a
x
e
−
b
x
has a local maximum at the point
(
2
,
10
)
then
383
118
Application of Derivatives
Report Error
A
a
=
5
;
b
=
0
B
a
=
5
e
,
b
=
1/2
C
a
=
5
e
2
,
b
=
1
D
none
Solution:
f
(
2
)
=
10
, hence
2
a
e
−
2
b
=
10
⇒
a
e
−
2
b
=
5
f
′
(
x
)
=
a
[
e
−
b
x
−
b
x
e
−
b
x
]
=
0
f
′
(
2
)
=
0
a
(
e
−
2
b
−
2
b
e
−
2
b
)
=
0
a
e
−
2
b
(
1
−
2
b
)
=
0
⇒
b
=
1/2
or
a
=
0
(rejected)
from (1) if
b
=
1/2
;
a
=
5
e
∴
a
=
5
e
and
b
=
1/2