Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the function f(x)=2 cot x+(2 a+1) ln | operatornamecosec x|+(2-a) x is strictly decreasing in (0, (π/2)) then range of ' a ' is [ mathrmm, ∞), find the value of mathrmm.
Q. If the function
f
(
x
)
=
2
cot
x
+
(
2
a
+
1
)
ln
∣
cosec
x
∣
+
(
2
−
a
)
x
is strictly decreasing in
(
0
,
2
π
)
then range of '
a
' is
[
m
,
∞
)
, find the value of
m
.
472
124
Application of Derivatives
Report Error
Answer:
0
Solution:
⇒
f
′
(
x
)
=
−
2
cosec
2
x
−
(
2
a
+
1
)
cot
x
+
(
2
−
a
)
=
−
2
cot
2
x
−
(
2
a
+
1
)
cot
x
−
a
⇒
f
′
(
x
)
=
(
cot
x
+
a
)
(
−
2
cot
x
−
1
)
≤
0
in
(
0
,
2
π
)
∴
cot
x
+
a
≥
0
in
(
0
,
2
π
)
Hence
a
≥
0