Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the equation x3-6x2+9x+λ =0 has exactly one root in (1,3), then λ belongs to the interval
Q. If the equation
x
3
−
6
x
2
+
9
x
+
λ
=
0
has exactly one root in
(
1
,
3
)
,
then
λ
belongs to the interval
358
154
NTA Abhyas
NTA Abhyas 2022
Report Error
A
(
−
6
,
−
3
)
B
(
−
4
,
0
)
C
(
−
2
,
2
)
D
(
−
1
,
3
)
Solution:
Let,
f
(
x
)
=
x
3
−
6
x
2
+
9
x
+
λ
⇒
f
′
(
x
)
=
3
x
2
−
12
x
+
9
=
3
(
x
2
−
4
x
+
3
)
=
3
(
x
−
1
)
(
x
−
3
)
f
′
(
x
)
<
0
,
∀
x
∈
(
1
,
3
)
f
(
1
)
=
4
+
λ
,
f
(
3
)
=
λ
For
f
(
x
)
=
0
to have exactly one root in
(
1
,
3
)
,
the values of
f
(
1
)
and
f
(
3
)
should have opposite signs
⇒
f
(
1
)
⋅
f
(
3
)
<
0
⇒
(
λ
+
4
)
λ
<
0
⇒
λ
∈
(
−
4
,
0
)