Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the equation of the tangent to the circle x2+y2-2x+6y-6=0 parallel to 3x-4y+7=0 is 3x-4y+k=0, then the values of k are:
Q. If the equation of the tangent to the circle
x
2
+
y
2
−
2
x
+
6
y
−
6
=
0
parallel to
3
x
−
4
y
+
7
=
0
is
3
x
−
4
y
+
k
=
0
,
then the values of
k
are:
1801
233
KEAM
KEAM 2005
Report Error
A
5
,
−
35
B
−
5
,
35
C
7
,
−
32
D
−
7
,
32
E
3
,
−
13
Solution:
The given equation of circle is
x
2
+
y
2
−
2
x
+
6
y
−
6
=
0
The centre and radius of circle are
(
1
,
−
3
)
and 4 respectively. Length of perpendicular from
(
1
,
−
3
)
to
3
x
−
4
y
+
k
=
0
is equal to radius 4.
∴
∣
∣
9
+
16
3
+
12
+
k
∣
∣
=
4
⇒
15
+
k
=
±
20
⇒
k
=
20
−
15
=
5
Or
k
=
−
20
−
15
=
−
35