y=(x+b)(x−2)x−a
At point (1,−3), −3=(1+b)(1−2)1−9 ⇒1−a=3(1+b)....(1)
Now, y=(x+b)(x−2)x−a ⇒dxdy=(x+b)2(x−2)2(x+b)(x−2)×(1)−(x−a)(2x+b−2)
At (1,−3) slope of normal is 41 hence dxdy=−4,
So, −4=(1+b)2(−1)2(1+b)(−1)−(1−a)b
Using equation (1) ⇒−4=(1+b)2(1+b)(−1)−3(b+1)b ⇒−4=(1+b)(−1)−3b(b=−1) ⇒b=−3
So, a=7
Hence, a+b=7−3=4