Q.
If the equation 2x2+4xy+7y2−12x−2y+t=0 where ' t ' is a parameter has exactly one real solution of the form (x,y). Then the sum of (x+y) is equal to
366
105
Complex Numbers and Quadratic Equations
Report Error
Solution:
2x2+4x(y−3)+7y2−2y+t=0 D=0 (for one solution) ⇒16(y−3)2−8(7y2−2y+t)=0 ⇒2(y−3)2−(7y2−2y+t)=0 ⇒2(y2−6y+9)−(7y2−2y+t)=0⇒−5y2−10y+18−t=0 ⇒5y2+10y+t−18=0 again D=0 (for one solution) ⇒100−20(t−18)=0⇒5−t+18=0 ∴t=23 for t=23;5y2+10y+5=0 (y+1)2=0⇒y=−1 for y=−1;2x2−8x+32=0 x2−4x+16=0 x=4⇒x+y=3