Q.
If the equation 22sin2x+8−p⋅2(sinx+2)2+28sinx=0 possesses a solution, then find the number of integral values of p.
66
104
Complex Numbers and Quadratic Equations
Report Error
Answer: 510
Solution:
22sin2x+8−p⋅2(sinx+2)2+28sinx=0
On divide the equation by 28sinx, we get 22sin2x−8sinx+8−p⋅2sin2x−4sinx+4+1=0 22(sin2x−4sinx+4)+1=p⋅2(sin2x−4sinx+4)
Let t=2sin2x−4sinx+4=2(sinx−2)2 t∈[2,29] t2+1=pt p=t+t1 ∴p∈[2+21,29+291]⇒ Integral values of ' p ' are 3,4,5, 512 ∴ Number of integral values of p are 512−2=510.