If the ellipse and hyperbola are intersecting orthogonally then foci of the two curves are coincident. Now, 81x2−63y2=161 ⇒1681x2−1663y2=1
Comparing with the standard form A2x2−B2y2=1 , we get A2=1681,B2=1663
Eccentricity of hyperbola is E2=1+A2B2=1+8163=81144=(912)2 ⇒E2=(912)2⇒E=(912)=34
Hence, the foci are (±AE,0)≡(±3,0)
Then, eccentricity of an ellipse 16x2+b2y2=1,b>0 is b2=a2(1−e2) ⇒b2=a2−a2e2 ⇒b2=16−9=7