We have, l+m+n=0 and 2lm+2ln−mn=0 ∴2(−m−n)m+2(−m−n)n−mn=0 [∵l=−(m+n)] ⇒−2m2−2mn−2mn−2n2−mn=0 ⇒−2m2−5mn−2n2=0 ⇒2m2+5mn+2n2=0 ⇒2m2+4mn+mn+2n2=0 ⇒2m(m+2n)+n(m+2n)=0 ⇒(2m+n)(m+2n)=0 ⇒m=2−n,−2n ⇒l=2−n,n ∴ DR's of two lines are <2−n,2−n,n> and ⟨ni−2n,n> i.e. <−1,−1,2> and <1,−2,1> ∴ Angle between these two lines =cos−1[(−1)2+(−1)2+(2)2(1)2+(−2)2+(1)2−1×1+(−1)×(−2)+2×1] =cos−1[1+1+41+4+1−1+2+2] =cos−1(63)=cos−1(21)=3π [∵cos3π=21]