Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the curve y=a x2+2 b x+c(a, b, c ∈ R, a, c ≠ 0) never meets the x-axis, then a, b, c can be in
Q. If the curve
y
=
a
x
2
+
2
b
x
+
c
(
a
,
b
,
c
∈
R
,
a
,
c
=
0
)
never meets the
x
-axis, then
a
,
b
,
c
can be in
155
99
Sequences and Series
Report Error
A
A.P.
B
G.P.
C
H.P.
D
none
Solution:
D
<
0
⇒
4
b
2
−
4
a
c
<
0
b
2
−
a
c
<
0
(i) If
b
=
2
a
+
c
⇒
(
a
+
c
)
2
−
4
a
c
<
0
⇒
(
a
−
c
)
2
<
0
(ii)
b
2
=
a
c
∴
0
<
0
(iii)
b
=
a
+
c
2
a
c
∴
(
a
+
c
)
2
4
a
2
c
2
−
a
c
<
0
(
a
+
c
)
2
a
c
[
4
a
c
−
(
a
+
c
)
2
]
<
0
(
a
+
c
)
2
a
c
(
a
−
c
)
2
>
0
can be true.