Q.
If the cube roots of unity are 1+ω+ω2, then the roots of the equation (x−1)3+8=0, are :
2153
217
AIEEEAIEEE 2005Complex Numbers and Quadratic Equations
Report Error
Solution:
Since (x−1)3+8=0 ⇒(x−1)3=−8=(−2)3 ⇒(−2x−1)3=1 ⇒(−2x−1)=(1)1/3 ∴ roots of (−2x−1) are 1,ω and ω2. ⇒ roots of (x−1)are−2,−2ω and −2ω2 ⇒ roots of x are −1,1−2ω and 1−2ω2 Note : If 1,ω and ω2 are cube roots of unity, then 1+ω+ω2=0 and ω3=1