Q.
If the conics whose equations are S≡x2sin2θ+2hxy+y2cos2θ+32x+16y+19=0 & S′≡x2cos2θ+2h′xy+y2sin2θ+16x+32y+19=0 intersects in four concylic points then
S+λS′=0 ⇒x2(sin2θ+λcos2θ)+y2(cos2θ+λsin2θ)+2xy(h+λh′)+x(32+16λ)+y(16+32λ)+19(1+λ)=0
it will represent a circle it sin2θ+λcos2θ=cos2θ+λsin2θ&h+λh′=0 λ=1∴h+h′=0