Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the circles x2+y2+2x+2ky+6=0 and x2+y2+2ky+k=0 intersect orthogonally, then k is equal to
Q. If the circles
x
2
+
y
2
+
2
x
+
2
k
y
+
6
=
0
and
x
2
+
y
2
+
2
k
y
+
k
=
0
intersect orthogonally, then k is equal to
1933
235
WBJEE
WBJEE 2012
Report Error
A
2
or
−
2
3
B
−
2
or
−
2
3
C
2
or
2
3
D
−
2
or
2
3
Solution:
Two circles are orthogonally if and only if
2
(
g
1
g
2
+
f
1
f
2
)
=
c
1
+
c
2
⇒
2
[(
1
×
0
+
(
k
)
k
]
=
6
+
k
⇒
2
k
2
=
6
+
k
⇒
2
k
2
−
k
−
6
=
0
⇒
2
k
2
−
4
k
+
3
k
−
6
=
0
⇒
2
k
(
k
−
2
)
+
3
(
k
−
2
)
=
0
⇒
(
k
−
2
)
(
2
k
+
3
)
=
0
⇒
k
=
2
,
−
2
3