Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the area of the bounded region R= (x, y): max 0, log e x ≤ y ≤ 2x, (1/2) ≤ x ≤ 2 is, α( log e 2)-1+β( log e 2)+γ, then the value of (α+β-2 γ)2 is equal to :
Q. If the area of the bounded region
R
=
{
(
x
,
y
)
:
max
{
0
,
lo
g
e
x
}
≤
y
≤
2
x
,
2
1
≤
x
≤
2
}
is,
α
(
lo
g
e
2
)
−
1
+
β
(
lo
g
e
2
)
+
γ
, then the value of
(
α
+
β
−
2
γ
)
2
is equal to :
211
169
JEE Main
JEE Main 2021
Application of Integrals
Report Error
A
8
B
2
C
4
D
1
Solution:
R
=
{
(
x
,
y
)
:
max
{
0
,
lo
g
e
x
}
≤
y
≤
2
x
,
2
1
≤
x
≤
2
}
2
1
∫
2
2
x
d
x
−
1
∫
2
l
n
x
d
x
⇒
[
l
n
2
2
x
]
1/2
2
−
[
x
ln
x
−
x
]
1
2
⇒
l
o
g
e
2
(
2
2
)
−
2
1/2
−
(
2
ln
2
−
1
)
⇒
l
o
g
e
2
(
2
2
−
2
)
−
2
ln
2
+
1
∴
α
=
2
2
−
2
,
β
=
−
2
,
γ
=
1
⇒
(
α
+
β
+
2
γ
)
2
⇒
(
2
2
−
2
−
2
−
2
)
2
⇒
(
2
)
2
=
2