Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the area lying in the first quadrant and bounded by the circle x2+y2-4 x=0, the parabola y2=4 x and the X - axis is A , 6 A-9 √3=
Q. If the area lying in the first quadrant and bounded by the circle
x
2
+
y
2
−
4
x
=
0
, the parabola
y
2
=
4
x
and the
X
- axis is
A
,
6
A
−
9
3
=
1587
198
TS EAMCET 2020
Report Error
A
π
B
2
π
C
3
π
D
4
π
Solution:
Given curve,
x
2
+
y
2
−
4
x
=
0
⇒
(
x
−
2
)
2
+
y
2
=
4
and
y
2
=
x
intersecting point of circle and parabola is
(
0
,
0
)
and
(
3
,
3
)
Required area
A
=
[
3
2
(
x
)
3/2
]
0
3
+
[
2
x
−
2
4
−
(
x
−
2
)
2
+
2
sin
−
1
2
x
−
2
]
3
4
A
=
2
3
+
[
(
0
+
2
sin
−
1
(
1
)
)
−
(
2
3
+
2
sin
−
1
(
2
1
)
)
]
A
=
2
3
+
π
−
2
3
−
3
π
=
2
3
3
+
3
2
π
6
A
−
9
3
=
4
π