Q.
If tangerit drawn to the curve y=∣x2−6x+8 at itspoint P(h,k) where h∈(2,4), whichalso touches the curve y−x2−6x+λ, then rumber of integral values of λ is
f(x)=y=x2−6x+λ....(ii) y=−x2+6x−8.....(i) f(3)≥1⇒λ≥10
Tangent at (2,0) at parabola (i) dxdy=−2x+6 dxdy](2,0)=2 ∴ Equation of tangent at (2,0) is y−0=2(x−2) y=2x−4
now this will be secant to parabola (ii)
if 2x−4=x2−6x+λ x2−8x+λ+4=0 D>0 ⇒λ<12 ⇒λ=10or11.