Given, tan(4π+2y)=tan3(4π+2x) ⇒1−tan2y1+tan2y=(1−tan2x1+tan2x)3 ⇒cos2y−sin2ycos2y+sin2y=(cos2x−sin2xcos2x+sin2x)3
On squaring both sides, we are getting 1−siny1+siny=(1−sinx1+sinx)3
On applying componentdo and dividendo rule 2siny2=(1+sinx)3−(1−sinx)3(1+sinx)3+(1−sinx)3 ⇒siny=1+3sin2x3sinx+sin3x
So, 1+3sin2x3sinx+sin3x=siny