The given equation is 8x2−26x+15=0. ∴ The sum of roots, tan2α+tan2β=826=413 and product of roots, tan2α⋅tan2β=815 ∴tan(2α+β)=1−tan2α⋅tan2βtan2α+tan2β =1−815413=−726
Now, cos(α+β)=1+tan2(2α+β)1−tan2(2α+β) [∵cos2θ=1+tan2θ1−tan2θ] =1+(−726)21−(−726)2=49+67649−676 =−725627