Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If tan 20° = λ , then ( tan160° - tan110°/1+( tan160°) ( tan110°) ) =
Q. If
tan
2
0
∘
=
λ
, then
1
+
(
t
a
n
16
0
∘
)
(
t
a
n
11
0
∘
)
t
a
n
16
0
∘
−
t
a
n
11
0
∘
=
3784
223
TS EAMCET 2017
Report Error
A
2
λ
1
+
λ
2
18%
B
λ
1
+
λ
2
5%
C
λ
1
−
λ
2
15%
D
2
λ
1
−
λ
2
61%
Solution:
Given,
tan
2
0
∘
=
λ
∴
1
+
(
t
a
n
16
0
∘
)
(
t
a
n
11
0
∘
)
t
a
n
16
0
∘
−
t
a
n
11
0
∘
=
1
+
(
t
a
n
(
18
0
∘
−
2
0
∘
)
(
t
a
n
(
9
0
∘
+
2
0
∘
)
)
t
a
n
(
18
0
∘
−
2
0
∘
)
−
t
a
n
(
9
0
∘
+
2
0
∘
)
=
1
+
t
a
n
2
0
∘
c
o
t
2
0
∘
−
t
a
n
2
0
∘
+
c
o
t
2
0
∘
[
∵
tan
(
18
0
∘
−
θ
)
=
−
tan
θ
;
tan
(
9
0
∘
+
θ
)
=
−
cot
θ
]
=
1
+
1
−
λ
+
1/
λ
=
2
λ
−
λ
2
+
1
=
2
λ
1
−
λ
2