Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If Tp , Tq,Tr are pth, qth and rth terms of an A.P then |Tp&Tq&Tr p&q&r 1&1&1| is equal to
Q. If
T
p
,
T
q
,
T
r
are
p
th,
q
th and
r
th terms of an A.P then
∣
∣
T
p
p
1
T
q
q
1
T
r
r
1
∣
∣
is equal to
6641
246
Determinants
Report Error
A
1
11%
B
-1
8%
C
0
59%
D
p + q + r.
21%
Solution:
T
p
=
a
+
(
p
−
1
)
d
;
T
q
=
a
+
(
q
−
1
)
d
;
T
r
=
a
+
(
r
−
1
)
d
∴
the given determinant
∣
∣
a
+
(
p
−
1
)
d
p
1
a
+
(
q
−
1
)
d
q
1
a
+
(
r
−
1
)
d
r
1
∣
∣
Operate
R
1
−
(
R
2
−
R
3
)
d
,
we get the determinant =
∣
∣
a
p
1
a
q
1
a
r
1
∣
∣
=
0