We have, sinx=1+t22t ⇒x=sin−11+t22t
On putting t=tanθ, we get x=sin−1(1+tan2θ2tanθ) =sin−1sin2θ=2θ ⇒x=2tan−1t....(i)
Also, tany=1−t22t ⇒y=tan−11−t22t
On putting t=tanθ, we get y=tan−1(1−tan2θ2tanθ) =tan−1(tan2θ)=2θ =2tan−1t....(ii)
From Eqs. (i) and (ii), y=x ⇒dxdy=1