Given that, sinθ+cosecθ=2...(i)
On squaring both sides, we get sin2θ+cosec2θ+2=4 ⇒sin2θ+cosec2θ...(ii)
Again squaring Eq. (ii), we get sin4θ+cosec4θ=2...(iii)
Again cubing Eq. (ii), we get (sin2θ+cosec2θ)3=23 ⇒sin6θ+cosec2θ+3sin2θcosec2θ (sin2θ+cosec2θ)=8 ⇒sin6θ+cosec6θ+3⋅2=8 ⇒sin6θ+cosec6θ=2...(iv)
On multiplying Eqs. (iv) and (iii), we get (sin4θ+cosec4θ)(sin6θ+cosec6θ)=4 ⇒sin10θ+sin4θcosec6θ+cosec4θsin6θ+cosec10θ=4 ⇒sin10θ+sin4θcosec4θ(sin2θ+cosec2θ)+cosec10θ=4 ⇒sin10θ+cosec10θ=4−2=2