Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If sin (α+β)=1, sin (α-β)=(1/2), then tan (α+2 β) tan (2 α+β), α, β ∈(0, π / 2), is equal to
Q. If
sin
(
α
+
β
)
=
1
,
sin
(
α
−
β
)
=
2
1
, then
tan
(
α
+
2
β
)
tan
(
2
α
+
β
)
,
α
,
β
∈
(
0
,
π
/2
)
, is equal to
300
185
Trigonometric Functions
Report Error
A
1
B
-1
C
0
D
none of these
Solution:
sin
(
α
+
β
)
=
1
or
α
+
β
=
2
π
sin
(
α
−
β
)
=
2
1
or
(
α
−
β
)
=
6
π
Solving, we get
α
=
π
/3
and
β
=
π
/6
.
Now
tan
(
α
+
2
β
)
tan
(
2
α
+
β
)
=
tan
(
3
π
+
3
π
)
tan
(
3
2
π
+
6
π
)
=
tan
3
2
π
tan
6
5
π
=
(
−
cot
3
π
)
(
−
cot
6
π
)
=
(
−
3
1
)
(
−
3
)
=
1