Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If sin A+ sin B+ sin C=0 and cos A+ cos B+ cos C=0, then cos (A+B)+ cos (B+C)+ cos (C+A) is equal to
Q. If
sin
A
+
sin
B
+
sin
C
=
0
and
cos
A
+
cos
B
+
cos
C
=
0
, then
cos
(
A
+
B
)
+
cos
(
B
+
C
)
+
cos
(
C
+
A
)
is
equal to
2275
243
AP EAMCET
AP EAMCET 2015
Report Error
A
cos
(
A
+
B
+
C
)
B
2
C
1
D
0
Solution:
Let
z
1
=
cos
A
+
i
sin
A
z
2
=
cos
B
+
i
sin
B
and
z
3
=
cos
C
+
i
sin
C
Then,
z
ˉ
1
=
cos
A
−
i
sin
A
,
z
ˉ
2
=
cos
B
−
i
sin
B
and
z
ˉ
3
=
cos
C
−
i
sin
C
Now, if
z
=
cos
θ
+
i
sin
θ
z
ˉ
=
cos
θ
−
i
sin
θ
=
(
c
o
s
θ
+
i
s
i
n
θ
)
(
c
o
s
θ
−
i
s
i
n
θ
)
(
c
o
s
θ
+
i
s
i
n
θ
)
=
c
o
s
θ
+
i
s
i
n
θ
c
o
s
2
θ
+
s
i
n
2
θ
=
c
o
s
θ
+
i
s
i
n
θ
1
=
z
1
,
z
ˉ
1
+
z
ˉ
2
+
z
ˉ
3
=
(
cos
A
−
i
sin
A
)
+
(
cos
B
−
i
sin
B
)
+
(
cos
C
−
i
sin
C
)
=
(
cos
A
+
cos
B
+
cos
C
)
−
i
(
sin
A
+
sin
B
+
sin
C
)
=
0
⇒
z
1
z
2
+
z
2
z
3
+
z
3
z
1
=
0
[
∵
z
ˉ
=
z
1
]
⇒
Σ
(
cos
A
+
i
sin
A
)
(
cos
B
+
i
sin
B
)
=
0
Σ
(
cos
A
cos
B
−
sin
A
sin
B
)
+
i
(
sin
A
cos
B
+
cos
A
sin
B
)
=
0
⇒
Σ
cos
(
A
+
B
)
+
i
sin
(
A
+
B
)
=
0
∑
cos
(
A
+
B
)
=
0
⇒
cos
(
A
+
B
)
+
cos
(
B
+
C
)
+
cos
(
C
+
A
)
=
0