sin−1(x−2x2+4x3−...)+cos−1(x2−2x4+4x6−...)=2π
This is true only when x−2x2+4x3−...=x2−2x4+4x6..... ⇒1+2xx=1+2x2x2
(Common ratios are −2x&−2x2& |common ratios ∣<1, in the given interval) 2+x2x=2+x22x2⇒x=0 or x=1⇒x=1, {xcannotbezeroas0<∣x∣<2}.