Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If sec((x2-2x/x2+1))=y, then (dy/dx) is equal to
Q. If
sec
(
x
2
+
1
x
2
−
2
x
)
=
y
, then
d
x
d
y
is equal to
3857
198
Continuity and Differentiability
Report Error
A
x
2
y
2
17%
B
(
x
2
+
1
)
2
2
y
y
2
−
1
(
x
2
+
x
−
1
)
34%
C
y
y
2
−
1
(
x
2
+
x
−
1
)
23%
D
x
2
+
y
2
x
2
−
y
2
25%
Solution:
y
=
sec
(
x
2
+
1
x
2
−
2
x
)
⇒
d
x
d
y
=
sec
(
x
2
+
1
x
2
−
2
x
)
t
an
(
x
2
+
1
x
2
−
2
x
)
.
{
(
x
2
+
1
)
2
(
x
2
+
1
)
(
2
x
−
2
)
−
(
x
2
−
2
x
)
(
2
x
)
}
=
sec
(
x
2
+
1
x
2
−
2
x
)
t
an
(
x
2
+
1
x
2
−
2
x
)
⋅
(
x
2
+
1
)
2
2
x
2
+
2
x
−
2
⇒
d
x
d
y
=
(
x
2
+
1
)
2
2
y
y
2
−
1
(
x
2
+
x
−
1
)