Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If sec θ=m and tan θ=n , then (1/m)[(m+n)+(1/(m+n))] is :
Q. If
sec
θ
=
m
and
tan
θ
=
n
, then
m
1
[
(
m
+
n
)
+
(
m
+
n
)
1
]
is :
3912
181
KCET
KCET 2006
Trigonometric Functions
Report Error
A
2
28%
B
2 m
27%
C
2 n
21%
D
mn
24%
Solution:
Given that
sec
θ
=
m
tan
θ
=
n
∴
m
1
[
(
m
+
n
)
+
(
m
+
n
)
1
]
=
s
e
c
θ
1
[
sec
θ
+
tan
θ
+
s
e
c
θ
+
t
a
n
θ
1
]
=
s
e
c
θ
(
s
e
c
θ
+
t
a
n
θ
)
[
s
e
c
2
θ
+
t
a
n
2
θ
+
2
s
e
c
θ
t
a
n
θ
+
1
]
=
s
e
c
θ
(
s
e
c
θ
+
t
a
n
θ
)
2
s
e
c
2
θ
+
2
s
e
c
θ
t
a
n
θ
=
s
e
c
θ
(
s
e
c
θ
+
t
a
n
θ
)
2
s
e
c
θ
(
s
e
c
θ
+
t
a
n
θ
)
=
2