Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If 𝑦 = 𝑦(𝑥) satisfies the differential equation 8√x(√9+√x)dy = (√4+√9+√x)-1 dx, x > 0 and 𝑦 (0) = √7, then 𝑦(256) =
Q. If 𝑦 = 𝑦(𝑥) satisfies the differential equation
8
x
(
9
+
x
)
d
y
=
(
4
+
9
+
x
)
−
1
d
x
,
x
>
0
and
y
(
0
)
=
7
,
then
y
(
256
)
=
2001
175
JEE Advanced
JEE Advanced 2017
Differential Equations
Report Error
A
3
B
9
C
16
D
80
Solution:
d
y
=
(
8
x
(
9
+
x
)
(
4
+
9
+
x
)
1
)
d
x
Let
4
+
9
+
x
=
t
⇒
2
9
+
x
1
⋅
2
x
1
d
x
=
d
t
⇒
d
y
=
2
t
d
t
⇒
2
d
y
=
t
1
d
t
2
y
=
2
t
+
c
⇒
2
y
=
2
4
+
9
+
x
+
c
y
(
0
)
=
7
⇒
c
=
0
y
=
4
+
9
+
x
y
(
256
)
=
3