Let Q be (x,y) ∴PQ=(x−2)2+(y−0)2 ⇒PQ=(x−2)2+y2 ⇒PQ=(x−2)2+4x[∵y2=4x] ⇒PQ=x2+4
For minimum value of PQ dnd(PQ)=0 ⇒2x2+41(2x)=0 ⇒x=0
Also, dx2d2PQ=x2+4x2+4−x⋅2x2+41⋅2x ∴dx2d2PQ∣∣x=0=1(+ ive )
Hence, PQ is minimum when x=0 ∴ Minimum value of PQ=02+4=2